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Recommendations regarding the calculation of the pressure distribution along a tube and the 
critical flow rate are derived from an analysis of theoretical and experimental data. 

A steady turbulent  flow a t  subsonic  veloci ty  is cons idered  below. The in tegra l  momen tum re la t ionship  
for  an a x i s y m m e t r i c  flow of c o m p r e s s i b l e  gas ,  obtained f rom the N a v i e r - S t o k e s  equations a f t e r  ave rag ing  
in acco rdance  with the Reynolds ru les  and taking into account  that the ave raged  veloci ty  far  f rom the en-  
t rance  has only one component  - aIong the x axis  - and that d p / d r  = 0, takes the fo rm 
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Here  70 is the tangential  s t r e s s  a t  the wall ,  which in p rac t i ca l  calculat ions is rep laced  by a d imens ion less  
d r a g  coeff icient  
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The quantity (p--~)'u' is the normal  turbulent  s t r e s s  due to longitudinal fluctuations of the momen tum and ve lo -  
ci ty;  By analogy with the tangential  turbulent  s t r e s s ,  which is a s sumed  to be propor t ional  to the radia l  ve lo -  
ci ty gradient ,  we can infer  that the normal  turbulent  s t r e s s  is propor t ional  to the veloci ty  gradient  in the 
d i rec t ion  of the x axis .  When this gradient  is comparab le  in value with the radia l  ve loci ty  gradient  the l a s t  
t e r m  in Eq. (1) cannot be neglected.  As exper iments  show, a s i m i l a r  s i tuat ion occurs  in the case  of a c r i -  
t ical  flow r a t e  on a sma l l  region c lose  to the end of the tube, where  the longitudinal veloci ty  gradient  in-  
c r e a s e s  rapid ly ,  approaching  infinity a t  the end. At flow ra t e s  l ess  than the c r i t i ca l  r a t e ,  and a lso  for  the 
g r e a t e r  p a r t  of the tube a t  c r i t i ca l  flow ra t e ,  the l a s t  t e r m  in Eq. (1) can be neglected and the equation then 
becomes  the in tegral  m om en t um  re la t ionship  for  an a x i s y m m e t r i c  boundary layer .  The comple te  s y s t e m  of 
bounda ry - l aye r  in tegral  re la t ionships  for  tube flow without heat  t r an s f e r  has  the form:  

the continuity equation 
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the momen t um  equation, including (2), 
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the energy conse rva t ion  equation with ep = const  
I ! 

2 pu T +  - -  d - - m 2  puT , , , •  d - - r  = G rm,o=const" (5) 
r o r o r o r o F 

o o 

F. 1~. Dzerzh insk i i  Al l -Union Hea t -Eng ineer ing  Inst i tute ,  Moscow. T rans l a t ed  f rom Inzhenerno-  
F iz ichesk i i  Zhurnal ,  Vol. 21, No. 3, pp. 423-430, Sep tember ,  1971. Original  a r t i c l e  submit ted  March  31, 

1971. 
O 1974 Consultants Bureau, a division of  Plenum Publishing Corporation, 227 ~Iest 17th Street, New York, N. Y. 100)I. 
No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, 
electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission of the publisher. A 
copy of this article is available from the publisher for $15.00. 

1 1 0 5  



H e r e  G / F  is the m a s s  flow ra t e ;  T m  is the stagnation t empe ra tu r e ;  T m ,  0 is the s a m e  t e m p e r a t u r e  be fo re  
ent rance  to the tube. To this sys t em we add the equation of s ta te  and for  its c losure  we requ i re  to know 
the local  values  of the d rag  coefficient.  

In engineer ing calcula t ions  all the quantities a r e  a s sumed  to v a r y o n l y  with length and then the in tegral  
re la t ionships  a r e  s impl i f ied  and become one-dimensional  equations. In addition, in engineer ing calcula t ions ,  
accord ing  to the r e s u l t s  of [15], the d r ag  coefficients can be a s s u m e d  to be the s a m e  as  for  i ncompres s ib l e  
fluids.  Severa l  invest igat ions have shown, however ,  that  compress ib i l i t y  causes  a cons iderable  reduct ion 
in ~ in tube flow, pa r t i cu l a r l y  a t  flow veloci t ies  c lose  to the veloci ty  of sound. On the other  hand, an exac t -  
ly opposi te  ef fec t  of compres s ib i l i t y  on ~ was shown for  this flow region in [6]. All these cont rad ic tory  f ea -  
tu res  a r e  i l lus t ra ted  in Fig. 1. 

In the p r e s e n t  p a p e r  we a t t empt  to d i scover  the causes  of the above-ment ioned  d i s ag reemen t  r e g a r d -  
ing the effect  of Compress ib i l i ty  on the d rag  coeff icient  in tubes.  The l imi t  up to which the use  of one--di- 
mens iona l  equations is p e r m i s s i b l e  will a lso be de te rmined .  

The effect  of c o m p r e s s i b i l i t y  on d rag  has been invest igated in a number  of pape r s  dealing with flow 
pas t  a f ia t  p la te .  The r e su l t s  of these invest igat ions a r e  given in [1]. F igure  8 in [2] gives the r e su l t s  of 
numerous  exper imenta l  invest igat ions of this p rob lem and c o m p a r e s  them with the theoret ica l  calculat ions 
of the au thors .  These  invest igat ions show that with i n c r e a s e  in lV[, the ra t io  of the flow veloci ty  to the v e l o -  
ci ty of sound, the d rag  coeff ic ient  d e c r e a s e s .  At subsonic ve loc i t ies ,  however ,  the effect  of c o m p r e s s i b i l -  
ity is sl ight;  when M = 1 the d rag  coefficient  for a i r  is 7-12% less  than in an incompress ib l e  flow. The re  
have been few theore t ica l  s tudies  of the p rob lem of c o m p r e s s i b l e  gas flow with a p r e s s u r e  gradient.  The 
p r o b l e m  of tube flow has  been  dealt  with in [3-6]. Without going into a detai led d iscuss ion  of these studies 
h e r e ,  we will  m e r e l y  note that  no a t t empt  was made  in them to take into account  the p r e s e n c e  of a longi tu-  
dinal p r e s s u r e  and veloci ty  gradient .  In [6], however ,  when an a t t empt  was made  to de te rmine  t h e s p e c i a l  
f ea tu res  of the region in tube flow where  M inc reases  rapidly ,  the author  based  his t r ea tmen t  on boundary-  
l aye r  equations,  which a r e  not appl icable  to this region.  Hence,  the resu l t s  of these  s tudies ,  l ike the data 
on flow pas t  a p la te ,  can hard ly  be used for  a re l iab le  calculat ion of tube flow, pa r t i cu l a r ly  in the nea r - ,  
c r i t i ca l  region.  I t  should a lso  be borne in mind that all  these s tudies  were  based  on a t t empts  to use  s e m i -  
emp i r i ca l  theor ies  de r ived  for  incompress ib le  flows and  that  such a t t empts  ~'involve a good deal  of a r b i -  
t r a r i n e s s "  [7]. In view of what  has been said,  exper imenta l  invest igat ions acqui re  g rea t  impor tance  and we 
will now turn to a deta i led considera t ion of these invest igat ions ,  confining ou r se lves  to those dealing with 
subsonic flows in the rmal ly  insulated tubes.  

We note f i r s t  of al l  that  all  the exper imenta l  invest igat ions w e r e  c a r r i e d  out by identical methods:  the 
gas flow r a t e ,  the gas t e m p e r a t u r e  before  the en t rance  to the tube, and the p r e s s u r e  dis t r ibut ion along the 
tube were  m e a s u r e d .  The calculat ions were  made  f rom one-dimens ional  equations.  We will cons ider  the 
validi ty of us ing one-d imens iona l  equations instead of in tegral  re la t ions .  To do this we t r a n s f o r m  Eq. (4), 
introducing the following functions: 

k - - I  G Ulim= k - - I  @ i  % = 4"---~ " --F " p 4k " pUUlim r__ d r__, (6) 
. '  r o ro 
o 

I 
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where  Uli m = / 2 c p T m , 0  is the l imit ing veloci ty  and k is the i sent ropy index�9 Af ter  s imple  a lgebra  and sub -  

st i tut ing d ~ / d x  = d~2/dq~ 1 .d~01/dx, we obtain 
k - - I  r . d%. (8)* P - 1 +  

4to (-- dp/dx) 41e% % d% 

F o r  the r0, q~l, and p / ( - d p / d x )  ass igned  in the exper iments  the values  of ~ will general ly  be di f ferent ,  de -  
pending on the method of calculat ing ~02. In the one-dimensional  approximat ion ,  using the equations of en-  
e rgy  and s ta te ,  we obtain (p = 0.25 ( / 1  + 1 6 ~ - 1 )  and (8) becomes  

v - V V $ 1 6  
= (9) 

4re k V1 + 

* Incidental ly,  if  we a s s u m e  that  (8) is actual ly in the cr i t ica l  sectijon, where  d p / d x  = - ~ ,  then, on equat -  
ing, the r ight  s ide of (8) to ze ro  and using (6) and (7), we obtain (t2 j ' pu2(r / ro )d(r / ro )  = - d p ,  i .e . ,  a quas i -  
i sen t rop ic  flow, as '  was  obtained in the case  of one-d imens iona l  flow [14]. 
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Fig.  1. Rat io  of  d r a g  coef f ic ien t  ~ in c o m p r e s s i b l e  
flow to i ts  value ~i in i n c o m p r e s s i b l e  flow for  tube flow 
of  a i r  a s  a funct ion of  the r a t io  M of  flow ve loc i ty  to 
sound ve loc i ty  f r o m  the data  of  d i f fe ren t  a u t h o r s :  1) 
f r o m  [3], ca l cu la t ing  the tu rbu len t  v i s c o s i t y  coef f ic ien t  
by  the N u s s e l t  me thod  [19]; 2) a c c o r d i n g  to Zhes tkov  [see 
[4], Chap.  6, Eq. (64)]; 3) a c c o r d i n g  to [5]; 4) [9]; 5) [11]; 
6) a c c o r d i n g  to [3], ca l cu la t ing  the tu rbulen t  v i s c o s i t y  c o -  
ef f ic ient  by  the P r a n d t l  me thod ;  7) [10]; 8) [6]; 9) a c c o r d -  
ing to [2] for  flow p a s t  a f la t  p la te .  

To find q~2 f r o m  the c o m m o n  so lu t ion  of  the in tegra l  r e l a t ions  we have to ca lcu la te  the in tegra l s  conta ined 
in them.  In a c c o r d a n c e  with the r e s u l t s  obta ined in [15, 19] we a s s u m e  a p o w e r - l a w  ve loc i ty  d i s t r ibu t ion  
n = u 1 ( 1 - r / r 0 ) ~ / n .  The  ca lcu la t ion  was  conducted  for  two e x t r e m e  c a s e s :  1) t e m p e r a t u r e  and,  hence ,  den -  
s i ty  cons tan t  in the c r o s s  sec t ions  of the flow; 2) s tagnat ion  t e m p e r a t u r e  cons tan t  ove r  the c r o s s  sec t ion  
{and, hence ,  th roughou t  the flow),  i . e . ,  no e n e r g y  t r a n s f e r  be tween  the s t r e a m  f i l aments .  In  the f i r s t  c a s e  
the in t eg ra l s  w e r e  ca lcu la ted  in q u a d r a t u r e s .  We obtained q~2 = 0.5 c 1 (Vrl + 4 @ ~ / c 2 - 1 ) , w h e r e  cl and c 2 a r e  
v e r y  weak  funct ions of  n. F o r  n v a r y i n g  f r o m  7 to 15, c I v a r i e s  f r o m  0.482 to 0.495 and c 2 f r o m  0.236 to 
0.246 (when n = ~o, cl = 0.50 and c 2 = 0.25). Subst i tut ing the i r  m e a n  va lues  we obtain 92 = 0.244 
�9 (vri + a n d  

. p _ k- -1 ,0223 | / 1  + 16,28q~ 2 -[ 0 . 0 2 2 3 k / l  + 16.28q~ (10) 

4 G (--dp/dx) /~ ] / 1  + 16.28q~ ( ~ 1 +  16.28q~]- 1) 

In the second  c a s e  the subs t i tu t ion  p = p / ~ T m [ 1 - ( U / U l i m ) 2  ] was  m a d e  and the in t eg rand  [ 1 - ( u  
/Ulim)2] -I was  expanded in a s e r i e s  of p o w e r s  of  U/Ul im = ( u l / u l i m ) ( 1 - r / r 0 )  i / n ,  w h e r e  ul is the ve loc i ty  
on the ax is .  In t eg ra t ion  t e r m  by t e r m  gives 

~o 

~91 = ~ n2 (ul/ulim) zi+l (2i + 1 T n) -1 (2i + 1 -]- 2n)~ 1, 

~=o (11) 
~o 

% = ~ n 2 (ul/ulim) 2i+2 (2i + 2 + n) -1 (2i + 2 + 2n) -1. 
i = 0  

An inves t iga t ion  showed tha t  we  could  l i m i t  o u r s e l v e s  to th ree  t e r m s  of each  s e r i e s .  The  ca l cu la t ions ,  
m a d e  in the r ange  u t / u l i  m = 0-0.5 (0.5 is the m a x i m u m  value  of u l / u l i  m for  subson ic  flow and k = 1.67) and 
n = 7-15 showed that  in this c a s e  a l so  q~2 depends  uniquely on ~l with a devia t ion  of not  m o r e  than 1%. Using  
a p lo t  of  ~2 a g a i n s t  @l we  ca lcu la ted  the r i gh t  s ide  of Eq. (8) and found the va lues  of  (~ /2 r0 )  . p / ( - d p / d x )  in 
the second  l imi t ing  ca se .  

We found tha t  the d r a g  coe f f i c i en t s  ca lcu la ted  f r o m  the o n e - d i m e n s i o n a l  equat ions  and f r o m  the in te -  
g ra l  r e l a t ions  for  k = 1:3,  1.4, and 1.67 did not  d i f fe r  f r o m  one ano the r  by m o r e  than 3-4% up to M = 0.75-  
0.80. Thus ,  in this r eg ion  the use  of  o n e - d i m e n s i o n a l  equat ions  is quite p e r m i s s i b l e .  

The  r eg ion  0.8 - M -< 1 a t  subson ic  flow ve loc i t i e s  in a tube occupies  a sma l l  r e l a t i ve  length x / r  0 
= 6-8  c lo se  to the exi t  and is c h a r a c t e r i z e d  by v e r y  l a r g e  longi tudinal  ve loc i ty  g rad ien t s .  In  this r eg ion  
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the validity of using boundary- layer  relat ions,  par t icular ly  the one-dimensional  equations, is ve ry  doubtful. 
In addition, the representa t ion of the velocity profi le in this region by a power- law formula with a constant 
power of r is also questionable. It was found in [13] that, in a small  region behind the narrow c ross  sect ion 
in the nozzle ,  pa r t  of the profi le is of a laminar nature. The possibil i ty of laminarizat ion of the flow by 
large negative p r e s s u r e  gradients has been reported in other investigations. 

We now consider  the resul ts  of the available investigations. 

F r o s s e l  [15] concluded that the drag coefficients in the case of a i r  flow in tubes were the same as for 
an incompress ible  fluid, in complete correspondence with the Nikuradze formula for subsonic and supe r -  
sonic flow velocit ies.  It should be noted, however,  that the graph i l lustrating this conclusion in [15] con-  
tains only one point for each set  of conditions. We must  infer that these points i l lustrate only the average  
values of the drag  coefficient over the whole length of the tube. 

Only the local values of ~ averaged over the length of the tube were given in [18] and it, was shown they 
were  the same as for ~neompressible flow. 

In our investigation [8] with superheated water  vapor we showed that up to M = 0.8 the compress ib i l i ty  
has no effect on the local values of the drag coefficient. No calculations were made for M > 0.8, since we 
found that the e r r o r  in calculating the drag  coefficient due to the e r r o r  in measurement  of the experimental  
pa r ame te r s  G / F  and T m increases  along the tube, par t icular ly  s trongly in the end region,  and reaches  an 
infinitely high value when M = 1. To check the reliabil i ty of the resul ts  obtained up to M _< 0.8 from Eq. (9), 
we also ca r r i ed  out the r e v e r s e  calculation by differentiation of the experimental p r e s s u r e  distr ibution 
curves .  Taking ~ according to Nikuradze and assuming it to be constant over the length since the Reynolds 
number var ies  ve ry  little with length in adiabatic flow, we calculated the p re s su re  distribution over the 
length.* The resul ts  of the calculations showed that up to c ross  sections at  a distance of x / r  0 = 8 from the 
exit section the measured  values were in good agreement  with the calculated values. 

In an investigation with water  vapor [16] only the average  drag  coefficients over the length were ca l -  
culated. They were  found to be approximately 30% higher than the Nikuradze values. This may be ex- 
plained in that the tube was composed of four segments and the measured  p re s su re  drops included local 
d rag  loss due to imperfec t  butting. 

In [17] the cr i t ical  flow ra te  was reached, in one of the four experiments conducted with subsonic a i r  
flow veloci t ies .  The local d rag  coefficient at  M = 0.84 (the highest  value at  which it was calculated) was 3% 
lower than the Nikuradze value. 

In experiments with a i r  [9] the calculations were  made up to M = 0.97. The authors noted that in the 
region 0.7 < M < 0.9 there  was a slow reduction, and at  M > 0.9 a sharp reduction,  of the drag coefficient. 
Using the tables of measured  p re s su re  distributions in these experiments we considered them in conjunction 
with our experiments with flows of argon and carbon dioxide [12]. We found that for gases of different a tom-  
icity the effect  of compress ib i l i ty  is best  allowed for by the number A - the rat io of the flow velocity to 
the maximum velocity in the case  of a f r ic t ion-f ree  flow into a vacuum. Wefound that when A < 0.3 (this 
cor responds  to M = 0.826 for CO 2, 0.71 for a i r ,  and 0.582 for argon) we can t a k e  ~ = const,  and when A 
> 0.3 the drag  coefficients calculated by using Eq. (9) dec rease  slowly. 

In the p resen t  investigation we calculated the p re s su re  distr ibution in the experiments of [9], a s s u m -  
ing the drag coefficient constant  along the length (as Nikuradze does). The resul ts  of these calculations 
showed that, as in [8], the differences between the calculated and measured  p r e s su re s  were  very  small  over  
the grea ter  pa r t  of the flow. These differences become significant only in the end region of the tube, where 

M > 0.8. 

It  was noted in [10] for a i r  that in the region up to M = 0.8 the drag coefficients a re  independent of M, 
but subsequently they dec rease  sharply.  An even more  rapid reduction of the drag  coefficient with increase  

* When ~ = const,  Eq. (9) integrates to 

k--1 ( ,  + )  x-- x~ (12) k-b1 ln__Z [_~.__ ~_ = - -~  4-~"-' 
k 21 . 

where 

z =. q~/2 
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in M in the region close to M = i was found in [ii]; we cannot analyze this result owing to the absence of 

experimental points. The variation of the drag coefficient with M for M > 0,8, according to [9-11], is 

shown in Fig. i. 

Finally, Depassel [19] illustrated the measured pressure distribution and the distribution calculated 

on the assumption that ~ = const in an experiment with critical air flow rate and found good agreement be- 
tween them up to the c r o s s  sec t ion  a t  a d i s t ance  of  x / r  0 = 9.8 f r o m  the end,  w h e r e  M = 0.83 a c c o r d i n g  to 
the m e a s u r e d  p r e s s u r e  and M = 0.817 a c c o r d i n g  to the ca lcu la ted  p r e s s u r e .  

In the l ight  of  the above ,  we can  a s s e r t  that  fo r  d i -  and t r i a t omie  gases  a t  l e a s t  we can  neg lec t  the 
ef fec t  of c o m p r e s s i b i l i t y  on the d r a g  coef f ic ien t  until the flow ve loc i ty  exceeds  75-80% of the ve loc i ty  of  
sound and can  ca lcu la t e  tube flow f r o m  Eq. (12). 

Ca lcu la t ions  for  the end r eg ion  of  flow in a tube a t  c r i t i ca l  flow ra t e  cannot  be m a d e  f r o m  the in tegra l  
b o u n d a r y - l a y e r  r e l a t i ons ,  f a r  l e s s  f r o m  one -d imens iona l  equat ions ,  owing to the l a r g e  p r e s s u r e  g rad ien ts .  
The sharp reduction in drag coefficient with increase in M near M = i, found in the cited investigations, is 
most probably a result of using one-dimensional equations for the calculation, as was indicated in [6]. This 

emerges from the following considerations. 

In the cross section where M = 1 the common solution of the equations of continuity, energy, and state 
with the substitution of the velocity of sound for the flow velocity gives a single-valued relationship between 

the pressure Per in this section and the critical flow rate Gcr inthe form Per = (Gcr/F)(2RTm/k(k-l). In 
addition, all the experiments show that at the critical flow rate the pressure in the exit section of the tube 

is less than Per. Hence, in the section where calculations give M = 1 the pressure gradient has a finite 
value, since after this section the pressure continues to fall. Substituting the expression for Per in r we 
obtain zero on the right side of Eq. (9) and, consequently, ~ = 0. Hence, calculation from one-dimen- 
sional equations and from the experimental pressure distribution curve will give ~ = 0 when M = 1 and, con- 

sequently, a rapid reduction of ~ in some region close to M = i. 

The absence of information about the structure of a turbulent flow in the region close to M = I, parti- 
cularly about the effect of turbulent normal stresses, does not allow us at present to use Eq. (I) and the cor- 

responding energy equation. 

The critical flow rate and the pressure Pmin established at the end of the tube in this case can be cal- 

culated from the empirical relationships obtained in [15] for fairly long tubes (//r 0 > 72): 

�9 = 0.911 ( 2 '/t~/(k-Z) Gcr (13) pm,./p~, 
~ I / Gcr,o ' 

l/ro]O,6J9 
Gcr)Gcr, ~ = 0.916 (-fo-j , (14) 

where Gor,0 is the critical flow rate in a loss-free flow: 

Gcr,o = F [2/(k -~- 1)]. ~/~k-~) V / ~ 2 k  Pkgk, (15) 

Pk and Ok are the pressure and density in the reservoir before the tube, and Pmin is the pressure at the end 

of the tube at critical flow rate, denoted by Gcr. 

One must bear in mind that in the experiments in [15] the entrance to the experimental tube was 
rounded. Hence, in the case of a sharp entrance the value Pmin shouldbe referred to the value of Pk with 

the pressure loss due to the entrance resistance subtracted. 
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