FLOW OF COMPRESSIBLE GAS IN A ROUND TUBE OF
CONSTANT CROSS SECTION WITH AN IMPERMEABLE
ADIABATIC WALL

V. L. Lel'chuk UDC 533.6.011.34

Recommendations regarding the calculation of the pressure distribution along a tube and the
critical flow rate are derived from an analysis of theoretical and experimental data,

A steady turbulent flow at subsonic velocity is congidered below. The integral momentum relationship
for an axisymmetric flow of compressible gas, obtained from the Navier —Stokes equations after averaging
in accordance with the Reynolds rules and taking into account that the averaged velocity far from the en-
trance has only one component — along the x axis — and that dp/dr = 0, takes the form
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Here 7, is the tangential stress at the wall, which in practical calculations is replaced by a dimensionless
drag coefficient :
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The quantity (pu)'u’ is the normal turbulent stress due to longitudinal fluctuations of the momentum and velo-
city. By analogy with the tangential turbulent stress, which is assumed to be proportional to the radial velo-
city gradient, we can infer that the normal turbulent stress is proportional to the velocity gradient in the
direction of the x axis. When this gradient is comparable in value with the radial velocity gradient the last
term in Eq, (1) cannot be neglected. As experiments show, a similar situation occurs in the case of a cri-
tical flow rate on a small region close to the end of the tube, where the longitudinal velocity gradient in-
creases rapidly, approaching infinity at the end. At flow rates less than the critical rate, and also for the
greater part of the tube at critical flow rate, the last term in Eq. (1) can be neglected and the equation then
becomes the integral momentum relationship for an axisymmetric boundary layer. The complete system of
boundary-layer integral relationships for tube flow without heat transfer has the form:

the continuity equation
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Here G/F is the mass flow rate; Tyy is the stagnation temperature; Ty, , is the same temperature before
entrance to the tube. To this system we add the equation of state and for its closure we require to know
the local values of the drag coefficient,

In engineering calculations all the quantities are assumed to vary only with length and then the integral
relationships are simplified and become one-dimensional equations. In addition, in engineering calculations,
according to the results of [15], the drag coefficients can be assumed to be the same as for incompressible
fluids. Several investigations have shown, however, that compressibility causes a considerable reduction
in ¢ in tube flow, particularly at flow velocities close to the velocity of sound. On the other hand, an exact-
ly opposite effect of compressibility on £ was shown for this flow region in [6]. All these contradictory fea-
tures are illustrated in Fig. 1.

In the present paper we attempt to discover the causes of the above-mentioned disagreement regard-
ing the effect of compressibility on the drag coefficient in tubes. The limit up to which the use of one-di-
mensional equations is permissible will also be determined.

The effect of compressibility on drag has been investigated in a number of papers dealing with flow
past a flat plate. The results of these investigations are given in [1]. Figure 8 in [2] gives the results of
numerous experimental investigations of this problem and compares them with the theoretical calculations
of the authors. These investigations show that with increase in M, the ratio of the flow velocity to the velo-
city of sound, the drag coefficient decreases. At subsonic velocities, however, the effect of compressibil~
ity is slight; when M = 1 the drag coefficient for air is 7-12% less than in an incompressible flow. There
have been few theoretical studies of the problem of compressible gas flow with a pressure gradient. The
problem of tube flow has been dealt with in [3-6]. Without going into a detailed discussion of these studies
here, we will merely note that no attempt was made in them to take into account the presence of a longitu-
dinal pressure and velocity gradient. In {6], however, when an attempt was made to determine the special
features of the region in tube flow where M increases rapidly, the author based his treatment on boundary-
layer equations, which are not applicable to this region. Hence, the results of these studies, like the data
on flow past a plate, can hardly be used for a reliable calculation of tube flow, particularly in the near-
critical region. It should also be borne in mind that all these studies were based on attempts to use semi-
empirical theories derived for incompressible flows and that such attempts "involve a good deal of arbi-
trariness" [7]. In view of what has been said, experimental investigations acquire great importance and we
will now turn to a detailed consideration of these investigations, confining ourselves fo those dealing with
subsonic flows in thermally insulated tubes.

We note first of all that all the experimental investigations were carried out by identical methods: the
gas flow rate, the gas temperature before the entrance to the tube, and the pressure distribution along the
tube were measured, The calculations were made from one-dimensional equations. We will consider the
validity of using one-dimensional equations instead of integral relations. To do this we transform Eq. (4),
introducing the following functions:
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where ujm = v 2¢pTm, is the limiting velocity and k is the isentropy index. After simple algebra and sub-
stituting dgy/dx = dgy/dgy +dey /dx, we obtain
Ep k=l e dey (8)*
4ro (—dpldx) Ak(P_z " (%3 de,
For the ry, ¢y, and p/(-dp/dx) assigned in the experiments the values of ¢ will generally be different, de-
pending on the method of calculating ¢,. In the one-dimensional approximation, using the equations of en-
ergy and state, we obtain ¢ = 0.25(V1 +16 $—1) and (8) becomes

g P =) 1+ 1661
Ay (—dpldD) TG (VT4 1668 — 1)
* Incidentally, if we assume that (8) is actually in the critical section, where dp/dx = —, then, on equat-

ing the right side of (8) to zero and using (6) and (7), we obtain d2 | pud(r/rd(r/rg) = ~dp, i.e., a quasi-
isentropic flow, as was obtained in the case of one-dimensional flow [14],
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Fig. 1. Ratio of drag coefficient ¢ in compressible

flow to its value ¢4 in incompressible flow for tube flow
of air as a function of the ratio M of flow velocity to
sound velocity from the data of different authors: 1)

from [3], calculating the turbulent viscosity coefficient
by the Nusselt method [19]; 2) according to Zhestkov [see
[4], Chap. 6, Eq. (64)]; 3) according to [5]; 4) 19]; 5) [11];
6) according to [3], calculating the turbulent viscosity co-
efficient by the Prandtl method; 7) [10]; 8) [6]; 9) accord-
ing to [2] for flow past a flat plate.

To find ¢, from the common solution of the integral relations we have to calculate the integrals contained
in them. In accordance with the resulfs obtained in [15, 19} we assume a power-law velocity distribution
n=uw (i-r/ ro)1 /R, The calculation was conducted for two extreme cases: 1) temperature and, hence, den-
sity constant in the cross sections of the flow; 2) stagnation temperature constant over the cross section
{and, hence, throughout the flow), i.e., no energy transfer between the stream filaments. In the first case
the integrals were calculated in quadratures. We obtained ¢, = 0.5 ¢; (V1 +4¢f/c,—1),where ¢; and c; are
very weak functions of n. For n varying from 7 to 15, ¢; varies from 0.482 to 0.495 and ¢, from 0.236 to
0.246 (when n = o, ¢y = 0,50 and ¢, = 0.25). Substituting their mean values we obtain ¢, = 0.244
(V1 +16.28¢%~1) and

£ p r—1.0223) 1 1 16,98¢7 +0.0223 /1 + 16.28¢}

4r,  (—dpldx) £)/ 1+ 162867 (1 1+ 16.28¢7 — 1)

In the second case the substitution p = p/RTm(l —(u/uljm)?] was made and the integrand [1—(u
/ujim)? 17 was expanded in a series of powers of u/ujjm = (W /ujm)il—r/ ro)i/ N, where u, is the velocity
on the axis. Integration term by term gives

(10)
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An investigation showed that we could limit ourselves to three terms of each series. The calculations,
made in the range w /ujjy, = 0-0.5 (0.5 is the maximum value of u; /ujjy, for subsonic flow and k = 1.67) and
n = 7-15 showed that in this case also ¢, depends uniquely on ¢; with a deviation of not more than 1%. Using
a plot of ¢, against ¢; we calculated the right side of Eq. (8) and found the values of (£ /2r)) -p/(~dp/dx) in
the second limiting case.

We found that the drag coefficients calculated from the one-dimensional equations and from the inte-
gral relations for k= 1.3, 1.4, and 1.67 did not differ from one another by more than 3-4% up to M = 0,75~
0.80. Thus, in this region the use of one-dimensional equations is quite permissible.

The region 0.8 =M = 1 at subsonic flow velocities in a tube occupies a small relative length x/r,
= -8 close to the exit and is characterized by very large longitudinal velocity gradients. In this region
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the validity of using boundary-layer relations, particularly the one-dimensional equations, is very doubtful.
In addition, the representation of the velocity profile in this region by a power-law formula with a constant
power of r is also questionable, It was found in [13] that, in a small region behind the narrow cross section
in the nozzle, part of the profile is of a laminar nature. The possibility of laminarization of the flow by
large negative pressure gradients has been reported in other investigations.

We now consider the results of the available investigations.

Frossel [15] concluded that the drag coefficients in the case of air flow in tubes were the same as for
an incompressible fluid, in complete correspondence with the Nikuradze formula for subsonic and super-
sonic flow velocities, It should be noted, however, that the graph illustrating this conclusion in [15] con-
taing only one point for each set of conditions. We must infer that these points illustrate only the average
values of the drag coefficient over the whole length of the tube.

Only the local values of ¢ averaged over the length of the tube were given in [18] and it.was shown they
were the same as for incompressible flow,

In our investigation [8] with superheated water vapor we showed that up to M = 0.8 the compressibility
has no effect on the local values of the drag coefficient. No calculations were made for M > 0.8, since we
found that the error in calculating the drag coefficient due to the error in measurement of the experimental
parameters G/F and Ty, increases along the tube, particularly strongly in the end region, and reaches an
infinitely high value when M = 1, To check the reliability of the results obtained up to M =< 0.8 from Eq. (9),
we also carried out the reverse calculation by differentiation of the experimental pressure distribution
curves. Taking ¢ according to Nikuradze and assuming it to be constant over the length since the Reynolds
number varies very little with length in adiabatic flow, we calculated the pressure distribution over the
length.* The results of the calculations showed that up to cross sections at a disiance of x/r, = 8 from the
exit section the measured values were in good agreement with the calculated values.

In an investigation with water vapor [16] only the average drag coefficients over the length were cal-
culated. They were found to be approximately 30% higher than the Nikuradze values. This may be ex-
plained in that the tube was composed of four segments and the measured pressure drops included local
drag loss due to imperfect butting,

In [17] the critical flow rate was reached, in one of the four experiments conducted with subsonic air
flow velocities. The local drag coefficient at M = 0.84 (the highest value at which it was calculated) was 3%
lower than the Nikuradze value,

In experiments with air [9] the calculations were made up to M = 0.97. The authors noted that in the
region 0.7 < M < 0.9 there was a slow reduction, and at M > 0.9 a sharp reduction, of the drag coefficient.
Using the tables of measured pressure distributions in these experiments we considered them in conjunction
with our experiments with flows of argon and carbon dioxide [12]. We found that for gases of different atom~
icity the effect of compressibility is best allowed for by the number A — the ratio of the flow velocity to
the maximum velocity in the cage of a friction-free flow into a vacuum. We ‘found that when A < 0.3 (this
corresponds to M = 0,826 for CO,, 0.71 for air, and 0.582 for argon) we can take § = const, and when A
> 0.3 the drag coefficients calculated by using Eq. (9) decrease slowly.

In the present investigation we calculated the pressure distribution in the experiments of [9], assum-
ing the drag coefficient constant along the length (as Nikuradze does). The results of these calculations
showed that, as in [8], the differences between the calculated and measured pressures were very small over
the greater part of the flow. These differences become significant only in the end region of the tube, where
M > 0.8.

It was noted in [10] for air that in the region up to M = 0.8 the drag coefficients are independent of M,
but subsequently they decrease sharply. An even more rapid reduction of the drag coefficient with increase
* When £ = const, Eq. (9) integrates to

Bl 2 k=gl 1N x— (12)
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where
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in M in the region close to M = 1 was found in [11]; we cannot analyze this result owing to the absence of
experimental points., The variation of the drag coefficient with M for M > 0.8, according to [9-11], is
shown in Fig, 1.

Finally, Depassel [19] illustrated the measured pressure distribution and the distribution calculated
on the assumption that { = const in an experiment with critical air flow rate and found good agreement be-
tween them up to the cross section at a distance of x/r; = 9.8 from the end, where M = 0.83 according to
the measured pressure and M = 0,817 according to the calculated pressure,

In the light of the above, we can assert that for di- and triatomic gases at least we can neglect the
effect of compressibility on the drag coefficient until the flow velocity exceeds 75-80% of the velocity of
sound and can calculate tube flow from Eq. (12).

Calculations for the end region of flow in a tube at critical flow rate cannot be made from the integral
boundary-layer relations, far less from one-dimensional equations, owing to the large pressure gradients.
The sharp reduction in drag coefficient with increase in M near M = 1, found in the cited investigations, is
most probably a result of using one-dimensional equations for the calculation, as was indicated in [6]. This
emerges from the following considerations.

In the eross section where M = 1 the common solution of the equations of continuity, energy, and state
with the substitution of the velocity of sound for the flow velocity gives a single-valued relationship between
the pressure pey in this section and the critical flow rate Ggp inthe form per= (Gor/F)V 2RTm /k(k—1). In
addition, all the experiments show that at the critical flow rate the pressure in the exit section of the tube
is less than pyp. Hence, in the section where calculations give M = 1 the pressure gradient has a finite
value, since after this section the pressure continues to fall, Substituting the expression for per in ¢ we
obtain zero on the right side of Eq, (9) and, consequently, £ = 0. Hence, calculation from one-dimen-
sional equations and from the experimental pressure distribution curve will give ¢ = 0 when M = 1 and, con-
sequently, a rapid reduction of £ in some region close to M = 1.

The absence of information about the structure of a turbulent flow in the region close to M = 1, parti-
cularly about the effect of turbulent normal stresses, does not allow us at present to use Eq. (1) and the cor-
responding energy equation,

The critical flow rate and the pressure pmin established at the end of the tube in this case can be cal-
culated from the empirical relationships obtained in [15] for fairly long tubes (I /Ty > 72):

Prnin/ Py = 0.911 ( 2 \)k/(k_” Gor (13)
N Gcr,o
. (mlfﬁw
GopfGep o = 0.916" % (14)
where Ger, g is the critical flow rate ina loss free flow:
~ Cieen s /BB 15
e = Pl 110 ZE )

pi and o are the pressure and density in the reservoir before the tube, and ppjp is the pressure at the end
of the tube at critical flow rate, denoted by Ger.

One must bear in mind that in the experiments in [15] the entrance to the experimental tube was
rounded. Hence, in the case of a sharp entrance the value py iy should bereferred fo the value of pk with
the pressure loss due to the entrance resistance subtracted.
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